Hypothesis testing-based adaptive PSO

نویسندگان

  • Yanxia Sun
  • Karim Djouani
  • Barend Jacobus van Wyk
  • Zenghui Wang
  • Patrick Siarry
چکیده

Purpose – In this paper, a new method to improve the performance of particle swarm optimization is proposed. Design/methodology/approach – This paper introduces hypothesis testing to determine whether the particles trap into the local minimum or not, then special re-initialization was proposed, finally, some famous benchmarks and constrained engineering optimization problems were used to test the efficiency of the proposed method. In the revised manuscript, the content was revised and more information was added. Findings – The proposed method can be easily applied to PSO or its varieties. Simulation results show that the proposed method effectively enhances the searching quality. Originality/value – This paper proposes an adaptive particle swarm optimization method (APSO). A technique is applied to improve the global optimization performance based on the hypothesis testing. The proposed method uses hypothesis testing to determine whether the particles are trapped into local minimum or not. This research shows that the proposed method can effectively enhance the searching quality and stability of PSO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

متن کامل

An Adaptive PSO Algorithm Based Test Data Generator for Data- Flow Dependencies using Dominance Concepts

One of the most important and effort intensive activity of the entire software development process is software testing. The effort involved chiefly increases because of the need to obtain optimal test data out of the entire search space of the problem under testing. Software test data generation is one area that has seen tremendous research in terms of automation and optimization. Generating or...

متن کامل

A Dynamic Analysis of Market Efficiency on Benchmark Crude oil markets: Based on the Adaptive Market Hypothesis

This paper examines the applicability of the adaptive market hypothesis (AMH) as an evolutionary alternative to the efficient market hypothesis (EMH) by studying daily returns on the three benchmark crude oils. The data coverage of daily returns is from January 2th 2003 to March 5th 2018. In this paper, two different tests in the form of two distinguished classes (linear and nonlinear) have bee...

متن کامل

Economic Load Dispatch using PSO Algorithm Based on Adaptive Learning Strategy Considering Valve point Effect

Abstract: In recent years due to problems such as population growth and as a result increase in demand for electrical energy, power systems have been faced with new challenges that not existed in the past. One of the most important issues in modern power systems is economic load dispatch, which is a complex optimization problem with a large number of variables and constraints. Due to the comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014